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Abstract. Autoregulation is the capability of an organ such as the brain, heart, and kidney to maintain
a constant blood flow over a series of changes in arterial pressure within their vascular beds. Since the
organs in the human body demand a steady delivery of blood and bio–agents to sustain their metabolic
activity, autoregulation is crucial in protecting the organs from both over and under perfusion of blood.
The impairment of autoregulation may lead to neurological, renal, and other complications. In this study,
we analyze a simplified and recently developed mathematical model of blood flow autoregulation based on
a system of nonlinear ordinary differential equations. Utilizing this model, we develop the optimal and
realistic wall–compliance profiles of the blood vessels. Using the realistic wall–compliance profile, we then
find the frequency response of the autoregulation system. The frequency response can be used to determine
whether an organ is autoregulating or not given some input frequency.

1. Introduction

Autoregulation is an extremely important mechanism that keeps blood flow and volume stable in the
circulatory system. The circulatory system regulates the blood flow and supply of nutrients, vitamins,
minerals, oxygen, carbon dioxide, hormones, metabolic waste and more to meet functional needs of tissues,
muscles, and organs. The basic components of the system consists of the heart, arteries, capillary beds, and
veins. The heart pumps the blood, the arteries carry oxygenated blood away from the heart into the capillary
beds, the capillary beds carry deoxygenated blood to the veins, and the veins carry the deoxygenated blood
back to the heart. Organ vasculature attempts to diminish changes in blood flow induced by changes in
arterial pressure. This control, known as autoregulation, is accomplished by adapting vascular stiffness which
fluctuates by dilation or constriction. There are many contributing factors and accompanying studies as to
what controls the autoregulation mechanism and response especially regarding the myogenic response–how
arterioles physically adjust by expanding and contracting and the tubuloglomerular feedback response–
“localized” information of ion content of the fluid in the kidneys being sensed and the arterioles adjusting
accordingly [2]. This study will focus on the hemodynamic parameters associated with the myogenic response
of autoregulation.

Most organs exhibit a certain degree of blood flow autoregulation. If blood pressure through an organ’s
arteries becomes too low or too high, the system fails to maintain a constant blood flow. The brain needs
to autoregulate the most because brain cells cannot tolerate an under or over supply of blood without
getting damaged [2]. A normal functioning autoregulatory mechanism within certain pressure limits could
be the difference between life and death for a small child with a severe concussion, for example. Physicians
can monitor a “relative” blood volume using NIRS sensors (near–infrared spectroscopy) or by measuring
intracranial pressure which moves in phase with blood volume [3].

Autoregulation has been studied and analyzed in both human and animal bodies using several different
types of mathematical models based on Navier–Stokes equations, stochastic differential equations, ordinary
differential equations, and Windkessel models (for examples, see [1], [5], and [8]). In this study, we analyze a
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mathematical model based on a system of nonlinear ordinary differential equations. The model is a simplified
version of a stochastic hemodynamic model with the autoregulation mechanism [1]. Though the model
is simpler and not as sophisticated as models based on Navier–Stokes equations or stochastic differential
equations, the analysis performed still provides enough accurate and valuable information.

The motivation of this study is to help doctors determine if autoregulation is taking place in a patient
by utilizing this mathematical model of blood flow autoregulation. The ultimate goal of the autoregulatory
mechanism is to keep blood flow constant to all organs and tissues. However, measuring a patient’s blood
flow is very difficult and time consuming in a realistic medical setting. So, how can a doctor tell if a patient’s
blood flow is autoregulating or not?

The remainder of this paper is organized as follows: Section 2 introduces and analyzes the mathematical
model to describe the flow of blood through an organ. In Subsection 2.1, we study and utilize the optimal and
realistic autoregulation models to come up with a complete autoregulatory wall–compliance profile. Next,
in Subsection 2.2, we develop and find the frequency response of the autoregulation system by using the
autoregulatory wall–compliance profile we find in Subsection 2.1 and solve for the optimal frequency for a
regulating response. Finally, in Section 3, we draw our conclusions and discuss the results.

2. Model

2.1. Wall–Compliance and Optimal Autoregulation. A new mathematical model describing the flow
of blood through an organ has been recently developed by Acosta et al. [1]. The model consists of a system
of two nonlinear ordinary differential equations for the blood pressure through an organ P , the flow rate
through an organ Q, and an algebraic equation relating the pressure through an organ P to the volume of
blood V contained in the organ. The system is the following:

Lref

[
Vref

V

]
dQ
dt +Rref

[
Vref

V

]2
Q = Pa − P,(1)

dV
dt = Q−Qv,(2)

V = Vref (1 + ΓP )
2
.(3)

Here Rref, Lref and Vref represent reference values which are constants for resistance, inertance and blood
volume. The arterial pressure is denoted by Pa, the flow rate into the veins is denoted by Qv, and the symbol
Γ denotes the wall–compliance (inverse of stiffness) of the blood vessels. Note that the wall–compliance is
not a constant but a function of blood pressure which models the autoregulatory mechanism. Autoregulation
will allow a change in the volume of blood in the organ, which induces changes in the resistance, which in-
duces changes in the blood flow to counter the variations in arterial pressure. The autoregulation mechanism
functions to control the flow rate, not to control the pressure. The following profile has been suggested as a
realistic model:

Γ = γ exp

{
− P

πo

}
,(4)

where γ is the baseline value for the vascular wall–compliance of an organ and πo represents how sensitive
the vascular wall–compliance is to changes in pressure. Both γ and πo are constants to be determined in
this section for the wall–compliance Γ. Additionally, we will be using reference parameters provided by Dr.
Acosta from Texas Children’s Hospital listed below:
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Name Symbol Value Units
Reference volume Vref 20 cm3

Reference inertance Lref 1.0 g/cm4

Reference resistance Rref 5.0 mmHgs/cm3

Venous flow rate Qv 10 cm3/s
Baseline flow rate Qbase 10 cm3/s

The first objective is to find and study the optimal wall–compliance profile Γopt by using the realistic
model of autoregulation Γ = γ exp {− (P/πo)} and manipulating our system of equations (1)–(3). We will
find Γopt as a function of the pressures Pa and P under the constraint Q = Qbase, where Qbase is the baseline
flow rate demanded by the organ. We will assume that Pa = P/θ where θ ∈ (0, 1). The second objective
will be to find the constants γ and πo. This will allow us to develop the frequency response of the system in
Subsection 2.2.

Let us find a profile for Γ such that under quasi–steady conditions dQ/dt = 0 so that we can guarantee that
Q = Qbase. Implementing these two conditions will yield the optimal profile Γopt. This will be an optimal
profile because it optimizes the purpose of autoregulation which is to keep the flow of blood constant through
an organ while using the baseline flow rate. Using (1) and (3):

Lref

[
Vref

V

]
dQ

dt
+Rref

[
Vref

V

]2
Q = Pa − P

becomes

Rref Qbase

[
(1 + ΓP )

−2
]2

= (Pa − P ).

Solving for the function Γ which will be denoted by Γopt, we obtain an optimal wall–compliance profile
Γopt(P ):

Γopt(P ) = 1
P

[[
Rref Qbase

Pa−P

] 1
4 − 1

]
.

Using the fact that Pa = P/θ for 0 < θ < 1, we have

Γopt(P ) = 1
P

[[
Rref Qbase

( 1
θ−1)P

] 1
4

− 1

]
.(5)
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Figure 1. Plot of (5). Here Rref= 5.0 mmHg/cm3, Qbase=10 cm3/s and θ = 0.5. As
instructed by Dr. Acosta, we choose θ = 0.5 for simplicity, so that the denominator in
(5) is equal to P . As blood pressure increases, the wall–compliance of the blood vessels is
decreasing. Also, note that Γ in general must be positive to make physical sense.
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In Figure 1, we can observe that the blood vessels are getting stiffer as pressure increases. Mathematically,
the optimal profile Γopt behaves similar to the realistic model of wall–compliance Γ in that both functions
decay exponentially. Using this correlation will help us to determine the unknown parameters γ and πo

so that (4) provides good autoregulation. To find both constants γ and πo for the realistic model Γ =
γ exp {− (P/πo)}, we will compare the two profiles of Γopt and Γ in Figure 2 to find where the profile Γ is
tangent and equal to the optimal profile Γopt. It is at the reference pressure of Pref = P = 25 mmHg, which
represents the average pressure of a new born baby provided by Dr. Acosta, that Γ is tangent and exactly
equal to the optimal profile Γopt.

First, we will solve for π0 by using the slope of Γ′(P ) and Γ′
opt(P ). Setting Γ′(P ) equal to Γ′

opt(P ) at
P = 25 mmHg:

(6)

Γ′(P ) = Γ′
opt(P )

− γ
πo

exp
{
− P

πo

}
= 1

P 2

[
1− 5

4

(
Rref Qbase

( 1
θ−1)P

)1/4
]
.

Due to Γ(P ) = Γopt(P ) at P = 25 mmHg, the left hand side of (6) can be rewritten as follows:

− 1

πo
γ exp

{
− P

πo

}
= − 1

πo
Γ(P ) = − 1

πo
Γopt(P ), if P = 25 mmHg.

Therefore (6) becomes

1

πo

⎧⎨
⎩ 1

P

⎛
⎝1−

[
Rref Qbase(
1
θ − 1

)
P

]1/4⎞⎠
⎫⎬
⎭ =

1

P 2

⎡
⎣1− 5

4

(
Rref Qbase(
1
θ − 1

)
P

)1/4
⎤
⎦ .

Solving for πo we have

πo = P

(
1−

[
Rref Qbase

( 1
θ−1)P

]1/4)
(
1− 5

4

[
Rref Qbase

( 1
θ−1)P

]1/4) , for 0 < θ < 1.

Using θ = 0.5 and P = 25 mmHg, we obtain

πo � 9.7226955.

Next, to solve for γ we will use Γ(P ) and Γopt(P ). Setting Γ(P ) equal to Γopt(P ):

(7)

Γ(P ) = Γopt(P )

γ exp
{
− P

πo

}
= 1

P

[[
Rref Qbase

( 1
θ−1)P

] 1
4

− 1

]
.

Solving for γ we have

γ = exp

{
P

πo

}
1

P

⎡
⎣[Rref Qbase(

1
θ − 1

)
P

] 1
4

− 1

⎤
⎦ .

Thus, by using the fact that πo = 9.7226955, P = 25 mmHg, and choosing θ = 0.5, we obtain

γ� 0.0990148.
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Therefore, the realistic wall–compliance Γ is given by

Γ(P ) = 0.0990148× exp

{
− P

9.7226955

}
,

whose graph is plotted in Figure 2 with the optimal profile Γopt. Note that in Figure 2, the realistic profile
is only a close approximation to the optimal profile near P = 25 mmHg. Further away from this point for
increases in pressure, the realistic and optimal profiles start to behave differently. Notice that as the pressure
increases toward infinity, the realistic profile tends toward zero and the optimal profile becomes negative,
which does not make physical sense.
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Figure 2. [Color online] Plot of the optimal and realistic wall–compliance profiles. Here
Rref= 5.0 mmHg/cm3, Qbase=10 cm3/s and θ = 0.5. Using our values for γ � 0.0990148
and πo � 9.7226955, our realistic profile is plotted side–by–side with our optimal profile.
The two profiles are similar especially in the range of about 22–35 mmHg where they are
intersecting.

Now that we have a realistic profile for wall–compliance, Γ from (4), we want to see how well (1) regu-
lates blood flow at different pressures using the realistic profile for wall–compliance. To test this, we will
manipulate (1) and (3) in such a way as to finding blood flow Q as a function of pressure P . Also, since we
would like to find a steady solution, we will assume that dQ/dt = 0. Under this assumption, the equation
for blood flow is

Q =
1

Rref

((
1

θ
− 1

)
P

)(
1 + γP exp

{
− P

πo

})4

.

In Figure 3, we see that our realistic wall–compliance profile regulates blood flow well within a range around
22 mmHg to 35 mmHg. This is due to our realistic wall–compliance profile deviating from our optimal
profile, as explained above.
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Figure 3. [Color online] The graph for blood flow Q under the assumption of dQ/dt = 0
and using Γopt(P ) and Γ. The realistic profile shows that blood flow is maintained reasonably
constant from about 22–35 mmHg, signifying that the autoregulation mechanism is actively
adjusting quite well to changes in pressure.

2.2. Frequency Response. The second objective of this study is to find the frequency response of the
autoregulation system and the optimal frequency for a regulating response by using (1)–(3) and the autoreg-
ulatory profile (4) with the constants γ and πo that were found in Subsection 2.1. We are especially interested
in two relationships: the amplitude gain from arterial pressure oscillations to flow rate oscillations and the
phase shift from arterial blood pressure to blood volume. This will provide useful information regarding the
detection and time delay of autoregulation response for some input frequency.

We assume that the arterial pressure Pa oscillates harmonically about a fixed reference value: Pa =
Pa,ref (1 + εeiωt) with small ε. First, we will define the global wall–compliance for the entire organ vascular
bed by using (3):

(8) C =
dV

dP
= 2VrefΓ(1 + ΓP ),

where the “overline” represents a time averaged value. Here we define

Cref = 2VrefΓref (1 + ΓrefPref) ,

where Γref = γ exp {− (Pref/πo)} with Pref = 25 mmHg. By using (2) we have

(9)
dV

dt
=

dV

dP

dP

dt
= C

dP

dt
= Q−Qv.

Assuming that the venous outflow rate Qv is constant we obtain

(10) C
d2P

dt2
=

dQ

dt
.

Now, we combine (9), (10), and (1) to obtain a second order differential equation for the pressure:
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(11) LC
d2P

dt2
+RC

dP

dt
+ P = P a(1 + εeiωt)−RQv.

Here, L = Lref, R = Rref, and C = Cref. For the remainder of the paper, we will use L, R, and C to denote
each reference value for convenience of notation.

We will solve (11) analytically to understand the behavior of pressure with respect to time. We will find
both the homogeneous and inhomogeneous solutions to (11). Observing the right hand side of (11), the
inhomogeneous solution will need to consist of two terms: a steady term which depends on Pa and RQv and
another term that oscillates with a frequency ω.

First, we find the homogeneous solution of (11):

(12)
d2P

dt2
+

R

L

dP

dt
+

1

LC
P = 0.

By setting P (t) = exp {rt} with a constant variable r, (12) becomes

(
r2 +

R

L
r +

1

LC

)
P (t) = 0.

Thus, the constant r must be

(13) r =
1

2

R

L

(
−1±

√
1− 4L

CR2

)
.

By substituting all reference values back into (13), the homogeneous solution of (11) is

Phomo(t) = C1 exp {r1t}+ C2 exp {r2t} ,

where C1 and C2 are unknown constants and r1 = −4.3634135 and r2 = −0.636586. We are only concerned
with the long–term behavior of our solutions. Since both r1 and r2 are negative, the homogenous solution
will quickly decay exponentially. Thus, we can safely neglect the homogeneous solution Phomo(t) for the
long–term behavior of our solutions.

Next, we need to find the inhomogeneous solution of (11). Let the inhomogeneous solution be

Pinhomo(t) = α+ (β + κi) exp {iωt} .

By substituting the inhomogeneous solution back into (11) and solving for α, β and κ, we have

α = P a −RQv,

β =
εPa(1−LCω2)

(1−LCω2+(CR)2ω2) ,

κ = −εPa(−ωRC)
(1−LCω2+(CR)2ω2) .

Substituting α, β and κ back into the inhomogeneous solution Pinhomo(t) and simplifying, we obtain the
inhomogeneous solution:

(14) Pinhomo(t) = P +
εP a exp {iωt}

.
1 + iRCω− LCω2
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Here, the amplitude gain from the arterial pressure oscillations to flow rate oscillations is given by

(15) amplitude = |β + κi| =
√
β2 + κ2 =

εP a√
(1− LCω2 + (CR)2ω2)

.

Now, we will test Pinhomo(t) with different frequencies ω, in Hz, and plot this function Pinhomo(t) in Fig-
ure 4. We can observe from Figure 4 as the frequency increases, the amplitude of the pressure oscillations
decreases. The amplitude gain is influenced significantly by the frequency and in addition influences the
time delay between pressure oscillations. A lower frequency will result in longer time delays while a higher
frequency will result in shorter time delays. The lower the frequency is, the easier it is to tell if an organ is
autoregulating or not [3].
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Figure 4. [Color online] Plot of the inhomogeneous solutions with incrementally increasing
frequencies. We observe that as the frequencies increase, the amplitude of the arterial
pressure oscillations decrease as well as the period–the time it takes to complete a cycle.

Hereafter, for convenience of notation, we will use P (t) to denote Pinhomo(t) from (14) in order to study
the long term behavior of pressure by neglecting the homogeneous solution. We will first plug P (t) into
the wall–compliance Γ(P ) = γ exp {− (P/πo)} and then expand the expressions in the wall–compliance Γ in
powers of ε:

Γ(P ) = γ exp

{
− 1

πo

(
P +

εP a exp {iωt}
1 + iRCω − LCω2

)}
,

which can be rewritten as

Γ(P ) = γ exp
{
− P

πo

}
× exp

{
− 1

πo

εPa exp{iωt}
(1+iRCω−LCω2)

}

= Γ× exp
{
− 1

πo

εPa exp{iωt}
(1+iRCω−LCω2)

}
.

From the linearization or expanding the expressions in the wall–compliance Γ in powers of ε, the wall–
compliance Γ is given by
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(16) Γ(P ) = Γ×
(
1− 1

πo

(
εP a exp {iωt}

(1 + iRCω − LCω2)

)
+O(ε2)

)
,

where Γ=γ exp
{−(P/πo)

}
.

Next, we plug (14) and (16) into (3) and expand (3) yielding

V = Vref

[
1 +

(
Γ

(
1− 1

πo

(
εP a exp {iωt}

(1 + iRCω − LCω2)

)
+O(ε2)

))(
P +

εP a exp {iωt}
1 + iRCω − LCω2

)]2
,

which can be simplified to

V = Vref

(
1 + ΓP

)2
+
(
2Vref(1 + ΓP )Γ(1− P/πo)

)( εP a exp {iωt}
1 + iRCω − LCω2

)
.

We neglect O(ε2) series terms because they are numerically insignificant contributions, due to epsilon being
very small. To show this, we will formulate and plot two active autoregulating equations: one with the O(ε2)
series terms and one truncated without the O(ε2) series terms.

For active autoregulation we obtain

(17) V = V + Cauto
εP a exp {iωt}

1 + iRCω − LCω2
+O(ε2)

and for active, truncated autoregulation we have

(18) V = V + Cauto
εP a exp {iωt}

1 + iRCω − LCω2
,

where V = Vref(1 + ΓP )2 and Cauto = 2Vref(1 + ΓP )Γ(1 − P/πo). We define the variables V and Cauto

here as being in the active autoregulation state because the wall–compliance Γ is a function of pressure P .
When Γ is not a function of P then Γ=γ in (18), representing that the wall–compliance is constant and
autoregulation is inactive.
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Figure 5. [Color online] Plot of volumes with varying regulation profiles from (17) and
(18). The inactive profile is 180◦ out–of–phase with both active profiles. As the phase shift
decreases from 180◦ to 0◦, the active profiles will “shift” toward the inactive profile, which
would make it increasingly difficult to determine if autoregulation is occurring or not.

First, we can observe that the regulating volume (17) and the truncated regulating volume (18) profiles
perfectly overlap in Figure 5. This serves as further justification for omitting the O(ε2) terms. The inactive
regulating volume profile is plotted when the wall–compliance Γ is constant, it is not a function of pressure
in (18). This indicates that the wall–compliance function is not adjusting to pressure fluctuations.

Secondly, we can observe that the inactive regulating volume profile in Figure 5 is always 180◦ out–
of–phase with the regulating volume profiles for any frequency ω. Mathematically, we can calculate that
Cauto will always be negative given any pressure P . Both observations are important results in that one
can confirm mathematically if an organ’s arteries, vascular bed, or area of the circulatory system is actively
autoregulating at some input frequency. Good autoregulation is therefore reflected as volume moves out of
phase with respect to pressure. In contrast, poor autoregulation is reflected when volume moves in phase with
pressure, signifying from the mathematical model that the vasculature is not reacting at all or Γ=constant.
Therefore, a physical connection can be made that if the wall–compliance of the blood vessels is not changing
with fluctuating pressure, then the autoregulatory mechanism is not working properly.

Lastly, we are interested in the phase shift between the arterial pressure and volume as a function of the
frequency ω > 0. From (17), the frequency response or the transfer function TPa→V (for more information
on transfer functions refer to [7]) from the arterial pressure oscillations to volume oscillations is given by

(19) TPa→V (ω) =
Cauto

1 + iRCω − LCω2
.

This transfer function will indicate how out–of–phase an active regulating response would be to an inactive
regulating response. By taking the argument of our complex number, we will be able to determine this phase
shift θ and must solve for optimal frequency. To see what phase shift θ would result in a frequency ω, set

θ = arg

(
1

1 + iRCω − LCω2

)
= tan−1

(
RCω

LCω2 − 1

)
.

We then have

(20) LCω2−RCω cot(θ)− 1 = 0.
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We choose θ = π/61 to obtain the optimal ω as

ωopt =

√
3RC +

√
3(RC)2 + 4LC

2LC
.

If we plug all reference values into ωopt, we calculate that ωopt = 1.42761 Hz.
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Figure 6. [Color online] The logarithmic plot of (19) representing the frequency–phase
response from arterial pressure to volume. One can observe that below 30◦, the frequencies
quickly become very high. This indicates that it would be difficult to measure if autoreg-
ulation was taking place or not because there is virtually no time delay to tell between an
active and inactive regulating response.

From Figure 6, we observe that the lower the frequency is, the easier it is to tell if an organ is autoregulating
or the more out–of–phase the active regulating response is from the inactive regulating response. This can

be explained by keeping in mind that Figure 5 showed an inactive regulating response is 180◦ out–of–phase
with the active regulating response. Thus, the phase shift will be harder to observe the further away from

180◦ the frequency is. Higher frequencies cause shorter time delays. However, an experiment conducted at
low frequencies will cause longer time delays and would take up too much time and so a “middle–ground”

must be found. At a phase shift of 30◦, the optimal frequency ωopt is obtained. In this way, an experiment

1This is a measurement consideration because it is hard to measure the phase of real signals with accuracy below π/6, refer

to [3].
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would not take too long and the time delay would be sufficient for a medical professional to be able to tell
whether autoregulation was taking place or not [3].

3. Discussion and Conclusion

To conclude, in this study we successfully utilized our mathematical model for blood flow autoregulation
and knowledge of mathematics to find the wall–compliance profile of the blood vessels and the frequency
response of the autoregulation system. By finding the constants γ and πo, we were able to successfully find the
complete realistic wall–compliance profile. Utilizing the wall–compliance profile (4) enabled us to then find
the frequency response of the autoregulation system using equations (1)–(3) and the optimal frequency. The
frequency response of the autoregulation system that we determined provides doctors with a mathematical
tool that can be utilized quickly and accurately to determine if autoregulation is taking place in a patient
by observing the phase shift given some input frequency. We speculate that utilizing the frequency response
could indicate the amount of time it takes for constant flow of blood to return to the circulatory system and
therefore, to vital organs. We acknowledge that we are not qualified to explain exactly how this information
would be applied for an experiment and what the details of an experiment conducted by qualified doctors
and or researchers would entail. We refer readers especially to [1], [3], and [9] for information on potential
experimentation and data collection with this type of mathematical analysis. In the future, we think our
model and results can be compared with information and data gathered from a designed experiment by
medical professionals to verify the accuracy of our model and ultimately help treat patients efficiently and
effectively.
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